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ABSTRACT
A recurring theme in discussions about the adoption of Model-
Based Engineering (MBE) is its effectiveness. This is because there
is a lack of empirical assessment of the processes and (tool-)use of
MBE in practice. We conducted a multiple-case study by observing
2 two-month MBE projects from which software for a Mars rover
were developed. We focused on assessing the distribution of the
total software development effort over different development activ-
ities. Moreover, we observed and collected challenges reported by
the developers during the execution of projects. We found that the
majority of the effort is spent on the collaboration and communi-
cation activities. Furthermore, our inquiry into challenges showed
that tool-related challenges are the most encountered.

CCS CONCEPTS
• Software and its engineering → Software development tech-
niques; System modeling languages; Development frameworks and
environments; Collaboration in software development;
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1 INTRODUCTION
Models provide effective means for supporting the communication
between stakeholders, and serve as specification for the implemen-
tation of software systems. Model-Based Engineering (MBE) is a
software development approach in whichmodels play an important-
central role [5]. MBE aims to increase the abstraction level and aims
to promote the automation of the development process [26].
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Empirical assessment of the use and process of MBE is scarce.
The adoption of MBE is still debated in practice. On the one hand,
MBE has been applied effectively in several application sectors, e.g.,
embedded systems [18] and telecommunication [2]. Furthermore,
by focusing on practitioners’ experiences and perceptions, several
studies claimed that the adoption of MBE helps to (i) improve the
productivity of the developing teams by increasing the abstraction
level, (ii) enhance the quality of the software and (iii) support its
maintainability [18–20]. On the other hand, some practitioners
consider MBE as a time-consuming and unproven approach that
merely complicates matters [26].

1.1 Rationale
Generally, the field of software engineering perceives a discrepancy
between empirical software engineering findings and developers’
(a priori) beliefs and opinions, which are often based only on per-
sonal perspectives on the development processes. Devanbu et al. [7]
suggested that more in-depth studies that address the interplay of
belief and evidence in software practices are needed. The same
issue is pointed out by Ralph [24] who differentiated between two
paradigms of software development research: Empirical and Ra-
tional. Empiricists believe that knowledge can only be justified by
sense experience and observation. In contrast, rationalists accept
that some knowledge can be justified by observation, but claim that
other knowledge is justified by reason or intuition. Ralph claims that
the rational paradigm continues to dominate the software engineer-
ing standards and approaches: many developers and researchers
hold beliefs that are incongruous with empirical evidence. This,
according to Ralph, would undermine the software engineering
community’s scientific credibility.

1.2 Objective and Contribution
This study contributes to the body of knowledge on the process and
use of MBE in practice. In particular, we conducted a multiple-case
study [32] by analyzing and discussing empirical data collected from
2 two-month MBE projects carried out at the Technical University
of Eindhoven, the Netherlands. Themain contributions of this paper
are two-fold:
• Firstly, we shed light on the distribution of development
efforts in MBE. The resulting observations on effort distri-
bution could lead to improved MBE project planning and
organization (e.g., resource allocation and risk management),
which in turn could lead to cost reduction.
• Secondly, we report and further analyze different challenges
to the process and use of MBE in practice. Exposing such
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challenges would make them a candidate subject for research
that are concerned with MBE process improvement. More-
over, understanding and providing ways to overcome these
challenges could bring a significant impact to the effective-
ness and efficiency of the MBE approach.

In this paper, we address the following research questions:
• R.Q.1 How is the total effort spent on MBE distributed over
different development activities?
• R.Q.2How is the effort spent on different MBE development
activities distributed over time?
• R.Q.3How large is the portion of collaborative work in MBE
projects?
• R.Q.4What are the challenges that affect MBE in practice?
• R.Q.5 How are the challenges that affect MBE distributed
over project time?

The remainder of this paper is organized as follows: in Section 2, we
consider and discuss the related work. We describe the case study
design in Section 3. We present and discuss the results in Section 4.
We discuss the threats to the validity of this study in Section 5.
Finally, we conclude and discuss the future work in Section 6.

2 RELATEDWORK
In this section, we review the published work on: (i) measuring
effort distribution between MBE development phases, and (ii) chal-
lenges encountered when adopting MBE.

2.1 Effort distribution in MBE
Distribution of effort in software engineering processes is largely
researched in the context of estimation and planning of software
projects [15]. Several practitioners studied the effort required for
different software development activities, and provided rules of
thumb such as the “40-20-40” rule of Pressman [23], that is 40%
on analysis and design, 20% on coding and 40% on integration and
testing. Other rules of thumb were provided by: Ambler [1], Boehm
[3], Boehm et al. [4], Brooks [6] and Zelkowitz [33].

In his text book, Sommerville [27] estimates effort distribution
by measuring cost units in different development activities, i.e.,
15 units on specification, 25 units on design, 20 units on develop-
ment/implementation and 40 units on testing.

Yang et al. [31] empirically studied development effort distribu-
tion of 75 projects from 46 software organizations from the China
Software Benchmarking Standard Group (CSBSG) database. The
development approaches defined in CSBSG database roughly fol-
low the waterfall model, including planing, requirements, design,
coding, testing and transition. The following mean efforts over each
development phases are reported: 16.14% for planning and require-
ments, 14.88% for design, 40.36% for coding (including unit test and
integration), 21.57% for testing (system testing), 7.06% for transition
(including installation, acceptance test and user training).

Recent works including the one by Papatheocharous et al. [22]
studied effort distribution based on projects obtained from the
International Software Benchmarking Standards Group (ISBSG)
R10 dataset [12]. The six development phases declared by ISBSG
are: planning, specification, design, build, test and implementation.
The mean efforts spent on each development phase are reported

as follows: 8.2% for planning, 7.9% for specification, 11.9% for de-
sign, 36.8% for developing and building, 15.5% for testing, 5.6% for
implementation and 14.0% for unphased activities.

On the basis of data collected from 20 industrial software de-
velopment projects, Heijstek and Chaudron [9] reported effort dis-
tribution over various disciplines, defined by the Rational Unified
Process (RUP), in MBE. The following effort distribution was re-
ported: 11% for analysis & design, 8% for requirements analysis, 12%
for testing, 38% for implementation, 13% for project management,
4% for change & configuration management, 3% environment, 2%
for deployment, 9% for others choices. This is, according to the
authors, surprisingly similar to the RUP Hump chart, and thus un-
derlines the similarity between MBE and traditional development
approaches. To the best of our knowledge, this study is so far the
only one that investigates effort distribution in MBE projects.

2.2 Challenges in MBE
Although MBE claims many potential benefits, e.g., gains in produc-
tivity, portability, maintainability and interoperability [13, 14, 19],
its adoption has been facing a number of challenges. These chal-
lenges are discussed in academic forums and empirically investi-
gated in a number of industrial cases.

Van Der Straeten et al. [29] summarize outcomes of a plenary ses-
sion at the MODELS’08 workshop on “Challenges in Model-Driven
Software Engineering” where participants discussed challenges in
the field of MDE. Discussed challenges included: management of
models quality, lack of focus on modeling process and models at
run-time, and insufficient MDE tool-support.

Lately, Mussbacher et al. [21] reflected opinions of 15 MDE ex-
perts on the biggest problems with MDE technologies over the last
20 years. The authors highlighted that tools usability and adoption,
people’s diverse perception of MDE, inconsistencies between soft-
ware artifacts, and lack of fundamentals in MDE are considered as
hindrances to MBE adoption.

Baker et al. [2] discussed experiences with MBE/MDE at Mo-
torola over a time span of almost 20 years. A number of challenges
were reported, such as poor tools and generated code performance,
lack of integrated tools, and lack of scalability.

Hutchison et al. [11] analyzed 250 survey-responses and 22 in-
terviews, as well as did on-site observations of MDE. They found
that the main challenges to MDE adoption are significantly related
to Domain-Specific Languages (DSLs) and MDE tools, as well as to
organizational factors and human training issues. Based on a survey
involving 113 software practitioners, Forward and Lethbridge [8]
reported common problems with model-centric development ap-
proaches. These problems are related to inconsistency of models
over time, model interchange between tools, and heavyweight mod-
eling tools.

Similarly, by surveying 155 Italian software professional, Torchi-
ano et al. [28] considered lack of competencies and supporting tools
as the main show stoppers preventing altogether the adoption of
modeling and model-driven techniques.

In the embedded systems domain, Liebel et al. [17] analyzed
survey-responses from 122 professionals working with MBE, and
considered that interoperability between (MBE/MDE) tools as a
main challenge to MBE adoption. Moreover, other factors such as,
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high effort to train developers and tools (poor) usability, were also
identified as secondary MBE challenges.

While the above-mentioned studies help in exploring challenges,
there are a number of other studies which focus on specific chal-
lenges, especially tool-related ones. By performing a series of inter-
views with 20 engineers and managers at General Motors, Kuhn
et al. [16] identified five points of friction in MDE. All of them are
related to MDE tools. Similarly, by analyzing a total of 39 interviews
with industrial practitioners, Whittle et al. [30] identified a taxon-
omy of technical, social and organizational issues related to MDE
tool use in practice. Addressing such issues together with model-
ing tools-related issues identified by this study, would probably
ameliorate the effectiveness and efficiency of MBE.

3 CASE STUDY DESIGN
Yin defined case studies as empirical inquiries to perform a deep
investigation of a particular phenomenon, where the boundary
between the phenomenon and its real-life context cannot be clearly
specified [32]. Our multiple-case study is an exploratory- inductive
empirical research [25] conducted to identify patterns in observa-
tions, seek new insights, and generate ideas and hypotheses for
new research. Figure 1 shows the design of our multiple-case study.
Further details regarding the case study design will be presented in
the following subsections.

3.1 Purpose and Cases
Multiple-case studies are regarded as being more robust than single-
case studies, and the evidence from multiple cases is often consid-
ered more compelling [10]. The intention of the study is to explore
the effort distribution over different MBE development activities.
Moreover, the study seeks to identify challenges and impediments
that could hinder the use of MBE in practice. In particular, two
cases were examined:

(1) MathWorks: MBE of the software of a Mars rover using MBE
tools as provided by MathWorks technologies, e.g., Matlab
and Simulink.

(2) PolarSys: MBE of the software of the same rover using MBE
tools as provided by PolarSys open source technologies, e.g.,
Papyrus and Capella.

3.2 Units of Analysis
The multiple-case study is embedded [32], with two Units of Anal-
ysis (UoA):

(1) Effort Distribution: Analysis of the distribution of the total
MBE effort over different development activities over time.

(2) MBE Challenges: Analysis of the challenges that could hinder
the adoption of MBE in practice.

3.3 Propositions
The two cases are selected to predict possible contrasting results
(theoretical replication) on MBE challenges and development ef-
forts by altering one condition: the used MBE tools (MathWorks
vs. PolarSys). Furthermore, the findings of the this study will be
compared to those of other related work in order to find out any
eventual supportive similarities or contradicting differences.

Figure 1: Case Study Design.

In particular, based on the related work we state the following
two propositions:
• Proposition A: We propose that the distribution of develop-
ment effort over different MBE activities follows the rules-
of-thumb e.g., the “40-20-40” rule. If our findings are not
compliant, then a deeper investigation of the MBE approach
is needed in order to understand why the effort distribution
deviates from the standard rules.
• Proposition B: We propose that poor tool-support is the most
frequently reported challenge that affect the adoption of
MBE in practice. If the perceived challenges in our study do
not match, then a deeper investigation of the severity of the
perceived challenges (both of our study and related work) is
needed.

Moreover, for the scope of this multiple-case study, and based on the
planned cross-case analysis, we state the following two additional
propositions:
• Proposition C: We propose that the distribution of the de-
velopment effort in case 1 matches that of case 2. If the
distributions do not resemble, then the choice of tools and
technologies in MBE could affect the development effort.
Hence, a deeper investigation of the impact of MBE tools on
the development effort is needed.
• Proposition D: We propose that similar challenges would be
perceived in the two cases. If different challenges with differ-
ent severities are perceived, and if the differences are mainly
related to the used MBE tools, then we suggest that there is
a difference in the maturity between the two technologies
(i.e., MathWorks vs. PolarSys).

3.4 Context
The Professional Doctorate in Engineering (PDEng) program of the
TU/e aims to train graduates that have (a non-CS) MSc diploma
to become professional software engineers. A group of 17 trainees
of this program were involved in two projects to develop software
for a couple of collaborating concurrently-maze-discovering rovers.
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Figure 2: Maze-discovering rovers assignment.

The rover system was chosen because of its similarity to the type
of software that is developed at the ASML company1 in Eindhoven.

For both projects, it was mandatory to use MBE as the develop-
ment approach (e.g., almost all software were developed and gener-
ated based on, and from, models). The objective of the projects was
to develop control software for two rovers that would concurrently
discover a single maze of roads as fast as possible. See Figure 2. Here,
a road consists of a small line of tape with a reflection that differs
sufficiently from the underground it is mounted on. The rovers were
equipped with IR sensors and a (low-resolution) PID-controller that
enabled the rovers to autonomously follow the roads. The rovers
had to communicate with each other in order to complete their task
in discovering different parts of the same maze. The discovered
map of the maze had to be visualized to the end-user during the
discovery, and had to be persisted as an end-result.

The trainees were bootstrapped with the hardware and a soft-
ware API to control the hardware (e.g., motion of the rover), as well
as to get the sensors’ readings (for e.g., line tracking). The software
API was provided at the start of the projects, the hardware itself
was provided late in the projects as usually is the case in real-life
situations. The main deliverable of the two projects was to produce
the rovers’ software application. However, in order to test the maze-
discovering software application, the trainees needed to develop
a software simulator of the hardware. Once the rovers’ software
application was verified and validated, the simulator was replaced
by the actual hardware.

The supervisors of the projects could accept deviations from the
initial requirements w.r.t. the development process. That would be
possible if and only if such deviations were very well motivated
and supported by the trainees.

The group of trainees was organized as follows:
• Team MathWorks: Consisted of seven trainees: One team
leader responsible of general team tasks as well as team
process, risks and design. One design manager appointed
to collaborate with the PM on the architecture. One test
manager responsible for managing UI tests, unit tests and
acceptance tests. One quality manager responsible for code-
review for quality assurance and managing documentation
(coding and documentation standards). Three developers
responsible for modeling, code generation, and manual cod-
ing as well as testing. The MathWorks team had to develop
both software systems (the rover software application and

1https://www.asml.com

Figure 3: Organization of the development teams.

the simulator) using MBE/MDE tools as provided by the
MathWorks2 technologies, e.g., Matlab3 and Simulink4.
• Team PolarSys: Consisted of six trainees. One team leader,
one design manager, one test manager, one quality manager
and two developers. These roles had the same responsibilities
as described in team MathWorks. The PolarSys team had to
develop the same software applications using MBE/MDE
tools as provided by the PolarSys5 open source technologies,
specifically, Papyrus6 and Capella7. Other tools used by the
two teams are reported later in Section 4.4.
• Configuration & Integration Support: Three trainees given
the task to setup, configure and support a continuous devel-
opment and integration environment for both MathWorks
and PolarSys teams.
• Project Management (PM): Both teams were managed by
one trainee, who was responsible of the plan, process, risks,
architecture and integration management of the two teams.

The two teams organized themselves in an agile way and had
to complete their projects in two months working full-time (i.e.,
each trainee worked approximately 8 hours per day). The trainees
of each team had to meet with the PM and discuss the progress
on a weekly basis. Figure 3 summarizes the organization of the
development teams augmented with size and role information.

3.5 Data collection and Analysis
The data collection consisted of weekly questionnaires as well as
developers’ time and actions tracking tools. Each week, the develop-
ers had to answer a questionnaire8 in which we collected, amongst
others, evidence on: (i) the perceived effort spent on different MBE
activities, and (ii) challenges and impediments that affected the
development process. The ProcrastiTracker9 software was used to
automatically track for each developer which applications and doc-
uments were used on their computer and for how long. We also
collected the recorded log files produced by this software for each
developer on a weekly basis.

We intend to analyze the results by means of pattern matching
and cross-case synthesis [32]. Pattern matching helps to compare
2https://se.mathworks.com
3https://se.mathworks.com/products/matlab.html
4https://se.mathworks.com/products/simulink.html
5https://www.polarsys.org
6https://www.eclipse.org/papyrus
7https://www.polarsys.org/capella
8http://www.rodijolak.com/pdf/WeeklyQuestionnaire.pdf
9http://strlen.com/procrastitracker/
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Figure 4: Total Effort Distribution Case 1

Figure 5: Total Effort Distribution Case 2

an empirically observed pattern with another pattern. When they
agree then the pattern is true. Whereas, cross-case synthesis can
be used in multiple-case studies to investigate and compare the
different cases. Moreover, we intend to use NVivo10 for qualitatively
analyzing the data related to the experienced challenges to MBE
approaches.

4 RESULTS
In this section, we present the findings of this study together with
their interpretation, as well as in relation to the published work and
stated propositions. We recall that the findings are based on the
considered multiple-case study and its context. Also, as mentioned
previously in Section 3.5, we recall that we used pattern matching
and cross-case synthesis for data analysis and interpretation.

4.1 Development Efforts (R.Q.1)
Figures 4 and 5 orderly arrange the percentage values of the efforts
spent on different MBE activities in case 1 (MathWorks) and case 2
(PolarSys), respectively. As can be noted, the majority of the effort
is spent on Discussion (14.32% in case 1 (MathWorks) and 15.32% in
case 2 (PolarSys)). More details regarding the topics/arguments of

10https://www.qsrinternational.com/nvivo

Figure 6: Discussion Effort Distribution Case 1

Figure 7: Discussion Effort Distribution Case 2

the discussions related to case 1 and 2 are provided by Figures 6
and 7, respectively. In particular, these figures report an estimation
of the percentages of the topics that were discussed each week.
We got these estimations by matching the reported percentages
on development discussions with the role responsibility of the
reporting developer. Based on this, four main discussion topics
were identified: Design and Development, Testing, Configuration
and Integration, and Project Management. It can be observed that
the majority of the discussions were about Project Management and
Design and Development.

Table 1 shows a comparison of the effort phase distribution
between the related work and our multiple-case study. This table
is inspired by Papatheocharous [22]. First of all, it seems that the
effort phase distributions in our two cases are compliant with the
RUP’s effort distribution reported by [1]. Moreover, it seems that
the development effort distribution in the two cases is compliant
with the “40-20-40” rule-of-thumb. This suggests that the effort
distribution in MBE projects does not deviate from the distribution
defined by the standard rules (Proposition A).

Giving a look on the separate development phases, we note the
effort spent on planning (i.e., project management activities such as:
define project scope, allocation, estimate cost, risks and schedule,
etc.), RE, specifications and testing in our two cases seem to be in-
line with the efforts reported by the related work, especially the



MODELS ’18, October 14–19, 2018, Copenhagen, Denmark R. Jolak et al.

Table 1: Effort phase distribution reported in literature

Study Planning Requirements Specifications Design Coding Testing Integration
Ambler (RUP)[1] Inception (10%) Elaboration (25%) Construction (55%) Transition (10%)
Zelkowitz[33] RE (10%) Spec (10%) Design (15%) Coding (20%) Testing (45%)
Brooks[6] Planning (33%) Coding (16%) Testing (25%) Integration (25%)
Sommerville[27] Specs (15%) Design (25%) Development (20%) Testing (40%)
Boehm[3] RE - Analysis - Design (60%) Coding (15%) Testing (25%)
Pressman[23] Analysis & Design (40%) Coding (20%) Testing & Integration (40%)
Papatheocharous[22] Plan (9.6%) Specs (9.3%) Design (14.0%) Build (42.3%) Testing (18.2%) Implement (6.6%)
Heijstek[9] Planning (13%) RE (8%) Analysis & Design (11%) Coding (38%) Testing (12%) Configuration (4%)
Yang[31] Planning & RE (16.1%) Design (14.9%) Coding (40.3%) Testing (21.6%) Transition (7%)
Case Study 1
(MathWorks) Planning (15.0%) RE (10.0%) Analysis & Research (7.0%) Design & Modeling (17.0%) Code Generation (9.2%)

Manual Coding (13.6%) Testing (15.4%) Integration & Configuration
(12.7%)

Case Study 2
(PolarSys) Planning (15.3%) RE (6.8%) Analysis & Research (8.8%) Design & Modeling (13.0%) Code Generation (12.0%)

Manual Coding (11.0%) Testing (20.0%) Integration & Configuration
(13.2%)

recent works of Heijstek [9], Papatheocharous [22] and Yang [31].
Surprisingly, the effort spent on software design and modeling in
our two cases is similar to the findings of the other related work,
especially [22], [31] and [33]. This finding empirically suggests
that MBE approaches do not require a lot of effort on design and
modeling, as it is believed among many developers. Moreover, code-
generation based on models allowed our teams to spend less effort
on manual coding. In particular, the combined effort spent on code-
generation and manual coding together in each of our two cases
is less that the effort of coding reported by [9, 22] and [31]. This
empirical finding confirms that MBE approaches require less effort
on manual coding because most of the code is obtained frommodels
via code-generation.

By doing a cross-case analysis, we interestingly note that the
effort distributions across phases of the two cases are quite similar
to each other. The use of different modeling tools in the two cases,
may explain the small differences in efforts spent on Design and
Modeling. In particular, developers in case 1MathWorks spent more
effort on design andmodeling than the developers of case 2 PolarSys.
Hence, it might be that different modeling tools only have a small
difference in impact on the development effort (proposition C).

Based on empirical findings, we suggest that MBE ap-
proaches do not require a lot of effort on design and mod-
eling. Moreover, they require a little effort on manual cod-
ing, as most of the code is obtained from models via code-
generation.

4.2 Effort Distribution Over Time (R.Q.2)
Figures 8 and 9 present the effort distributions over each MBE ac-
tivity during the two-month project period related to MathWorks
case and PolarSys case, respectively. On the left side of the fig-
ures, eight main development activities are shown: Requirements
Engineering, Analysis and Research, Design and Modeling, Code
Generation, Manual Coding, Testing, Integration and Configura-
tion, and Project Management. Whereas, on the right side of the
figures, the effort distributions of other three secondary activities
are reported: Documentation, Tool-Learning and Discussion.

By considering the effort spent on design and modeling, we notice
a spike during the first week in both cases,MathWorks and PolarSys.
This is because both teams used models at the beginning of the
projects for ideation and discussion of design alternatives.

Team MathWorks spent more effort onmanual coding than team
PolarSys (as can be noticed by looking to figures 4 and 5), especially
towards the end of the project. This phenomenon suggests that the
code-generation facilities offered by MathWorks technologies are
less than those of PolarSys. This is confirmed by the developers
who reported that the tools offered by PolarSys (i.e., Papyrus and
PapyrusRT) are more effective, user-friendly and generate code
with more appropriate data structures and executables statements.

Both teams started with testing relatively early and throughout
the projects. It is also notable that both teams spent more effort
on testing towards the end of the projects. We think that this is
a common trend in most software development projects, where
more tests happen towards the end (e.g., system, integration and
acceptance tests).

The effort spent on integration and configuration is quite similar
between the two cases. Integration of software was occurring regu-
larly in the two cases. In particular, for both cases, we notice a peak
in the effort on week six. This is actually because the hardware was
provided to both teams during that week, and the developers spent
more effort on the configuration of the software and hardware.

As predicted, the effort on tool learning was high during the
first weeks of the two cases, and gradually went down afterwards
as the developers got more used to the tools over the time. The
majority of the effort spent in the two cases was on discussing of the
development activities. In particular, it seems that the discussions
were regularly happening during the entire duration of the two
projects, and not only during the planned weekly meetings.

Considering code-generation, we found that the tools of-
fered by PolarSys open source technologies (i.e., Papyrus
and Papyrus-RT) are more mature than the tools offered
by MathWorks technologies (i.e., Matlab and Simulink).

4.3 Individual vs. Collaborative Effort (R.Q.3)
In the weekly questionnaire, we asked developers about their per-
ceptions of the ratio of individual versus collaborative development
effort that occurred during each week. Figures 10 and 11 provide
an overview of the distribution of collaborative work over the
entire duration of the project of case 1 MathWorks and case 2 Po-
larSys, respectively. Apparently in both projects, and for each week,
the collaborative work was dominating. The collaborative work
included discussions, group meetings, sharing knowledge and un-
derstanding, and collaborative development (e.g., definition of the



Model-Based Software Engineering:
A Multiple-Case Study on Challenges and Development Efforts MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Figure 8: Effort Distribution Case 1

Figure 9: Effort Distribution Case 2

Figure 10: Case 1: individual versus collaborative work

data structure of the maze, modeling, code-generation, testing and
pair programming). A further analysis of the patterns in figures 10
and 11 shows that more individual work happened at the begin-
ning of both development projects, while more collaborative work
happened towards the end. This can be explained by the fact that
the developers worked individually on tools exploration and learn-
ing during the first weeks. Moreover, the developers reported that
they spent more time on pair programming and testing meetings
towards the end of the projects.

Our findings empirically indicate that model-based soft-
ware development is an endeavor that requires intensive
communication and collaboration between developers.

Figure 11: Case 2: individual versus collaborative work

4.4 Tool-Chain
A variety of tools were used for the different development activities.
These tools ranged from being main model-based development
tools, such as Papyrus, PapyrusRT, Matlab/Simulink, Enterprise
Architect and Capella, to other supportive tools such as Latex,
Slack, PDF Reader, Version Control, Text Editor, Outlook, Power
Point and Word. Figure 12 provides an overview on the tools which
were used in the two cases: 1 and 2. This figure also highlights the
distribution of the total tool effort percentage between the different
used tools. About 22% of case 1 total tool-use effort was spent on
Matlab and Simulink. Whereas, around 30% of case 2 total tool-use
effort was spent on Papyrus and Papyrus RT. The focus on these
tools was expected given the project’s objective of tool use of the
two development teams.
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Figure 12: Overview of the used tools and their effort distribution

4.5 Experienced Challenges (R.Q.4)
Every week, the members of each project were asked to report the
challenges that they experienced during the past week. The pie
charts 13 and 14 orderly arrange the reported challenges ranging
from the most experienced to the less experienced challenge during
the execution of case 1 and case 2, respectively. Tools Usability was
the most experienced challenge to MBE in the two cases (23% in
case 1 and 25% in case 2). Challenges in Tool-Chain Learning were
the second most experienced challenges (20% in case 1 and 19% in
case 2). More details regarding the categories of the challenges are
described in Table 2.

In both of the cases in our study, multiple challenges related
to MBE tools were reported, such as tools- usability, learning, in-
stallation and configuration, and update. This is actually in-line
with the related work (e.g., [21] and [30]) which states that poor
tool-support is one of the main challenges to MBE (proposition B).

A cross-case analysis shows that the majority of the challenges
were overall experienced similarly in both cases, especially tool-
related challenges (proposition D). This finding indicates that the
modeling tools provided byMathWorks and PolarSys are still imma-
ture and have to be enhanced in order to meet the needs of MBE
and MBE developers. More information onMathWorks and PolarSys
challenges are provided on-line11.

Our findings show that tool-related challenges are the
most encountered. These tool-challenges are due to: tools
usability, tool-chain learning, interoperability of tools,
and tools installation and configuration.

4.6 Challenges Distribution Over Time (R.Q.5)
Figure 15 presents the distribution of the experienced challenges
over the eight weeks period of the two projects. It is remarkable
that Tool-chain Learning and Tools Usability challenges were mostly
experienced and reported during the first two weeks of the two
project.

Challenges in tool-learning were also perceived in weeks 3 and 4
in both cases. For case 1 (MathWorks), the main reason was that the

11http://www.rodijolak.com/pdf/toolsChallenges.pdf

Figure 13: Experienced challenges in Case 1

Figure 14: Experienced challenges in Case 2.
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Table 2: Classification schema for the challenges

Category Description
Tool-Chain Learning Effort on learning the tools to be used in the project

Tools Installation & Configuration Effort on the installation & config. of the tools on the machines of the developers
Interoperability Missing the ability to exchange artifacts between the different tools
Tools Update Effort on adapting the software to new tool/library versions

Difficulty of Use Complexity and cumbersomeness of the tools
Effectiveness Incompleteness, inaccuracy and inconsistency
Efficiency Long tasks’ completion timeTools Usability

UX Uncomfortable tools and unacceptability of use
Task Allocation Effort on the organization and distribution of tasks between developersTask Management Synchronization Effort on the synchronization of development activities

Team Management Effort on the organization of the teams
Challenging Tasks Complex development tasks that require a lot of mental effort

Portality Difficulty in transferring software on different platforms, e.g., operative systems
Integration Challenges Difficulty in integrating single different modules of the software

Communication Problems caused by miss- or late communication between the stakeholders

developers spent a lot of time on learning Simulink testing-tool in
order to test the simulator software. Whereas for case 2 (PolarSys),
learning how to use third-party C++ code in a PapyrusRT project
was perceived as challenging.

Tools usability challenges were reported regularly during the
execution of the two projects. In particular, on week 6 challenges
related to Simulink model advisor were reported in caseMathWorks.
In contrast, on weeks 5 and 6 several challenges were reported by
team PolarSys related to a PapyrusRT update from version 0.7 to
0.8, which in turn caused lots of migration conflict issues.

Generally, it seems that the majority of the issues related to
tools usability were encountered during the first weeks, when the
developers started to get their hands dirty in the projects. More
tool-related issues were reported afterwards by performing more
activities in the projects, and hence by exploring and using more
tools’ functionalities.

For both cases, Task management challenges were basically en-
countered at the beginning, when the teams spent more effort on
distributing the tasks between the developers, and also in different
occasions afterwards (until week 7) where synchronization issues
were reported.

In both cases Challenging tasks (see Table 2) were more encoun-
tered at the beginning- and towards the end of the projects. At the
beginning, performing development activities was challenging as
the developers were not so familiar with the tools. Whilst in order
to finish the projects on time, the developers were over-allocated
with multiple tasks towards the end of the projects.

Tools installation and configuration challenges were encountered
during the first weeks of the two projects, as could be expected.

For both cases, tool-interoperability challenges were mainly en-
countered from week 3 to week 6 when several issues related to
linking the produced software application with the API of the rover
(e.g., coding the wrapper between the generated code and rover’s
API) were reported. This also caused Portability challenges as there
were incompatibilities between some API-library dependencies and
the used operative systems.

5 THREATS TO VALIDITY
We identified and grouped the threats to validity in our study ac-
cording to Yin [32]:

5.1 Construct Validity
Constructs validity refers to how well operational measures rep-
resent what researchers intended them to represent in the study
in question. The collection of subjective perceptions regarding de-
velopment efforts and challenges after completing a project may
not be optimal. This is because the subjects may fail to recall how
much effort was given to a specific task or what challenges were
encountered during their experience. To mitigate this, we collected
the perceptions on a weekly basis: Once after the end of each week.
Furthermore, we looked into the logs of the modeling tools and Pro-
crasti activity tracker in order to triangulate the data which we got
through collecting perceptions. In turn, the activity tracking and
logging tools have a limitation. These tools log the activities only
when there is an interaction between the users and their PCs. As a
result, no activity does not imply that the subject is not working, for
example one might be reading the document without touching the
PC. We think that the two data collection approaches (i.e., collect-
ing perceptions and logging developers’ activities) adopted in this
study have their own limitations. However, using multiple sources
of evidence helped us to increase construct validity by encouraging
convergent lines of inquiry.

5.2 Internal Validity
Internal validity concerns studies in which causal relationships
are examined. Moreover, it concerns efforts made to ensure that
possible confounding factors are identified and alleviated. The level
of experience and expertise in MBE may influence the effort re-
quired by a developer to accomplish a specific MBE activity. This
may lead to spending more or less effort on the development tasks.
All of the subjects who took a part in our study are familiar with
MBE because they participated in a workshop that taught the MBE
development paradigm.

Some developers may consider some development tasks as chal-
lenging, while other developers may consider such tasks as less
challenging. The subjects often discussed their reported challenges
and motivated their perceptions. This was, to some extent, helpful
to conceive the seriousness of the reported challenges. Moreover,
we consider the challenges that were encountered and reported by
more than one subject as more significant.
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Figure 15: The distribution of the experienced challenges over the total period of the project.

We recall that our subjects are Professional Doctorate in En-
gineering (PDEng) trainees. This might have made the subject
spending more effort on learning new tools and finding out how to
work as an actual development team. However, our subjects know
each other in advance. Furthermore, prior to our study, the subjects
worked together on several other development projects.

5.3 External Validity
External validity concerns the extent to which results of a case study
can be generalized. By design, case studies have a very limited
external validity stemming from the fact that a topic is studied
within its context. Therefore, we cannot claim that our findings are
generalizable (i.e, generalizations to different projects in different
domains might have different results). Instead, the case design
and the replication logic with the cross-case analysis increases the
external validity of this study. In particular, we tried to describe the
case context as detailed as possible in order to allow practitioners
to decide whether or not the findings might generalize to their
own case context. Moreover, we underline that our study involved
first-time tool users. Therefore, different results might be obtained
if professionals with deep tool experience did the same projects.

5.4 Reliability
Reliability concerns the extent to which the operations of a study
can be repeated by other researchers, achieving the same results.
As a part of the case study design, we created a case study protocol
which ensured that we conducted the study and collected the data
in a consistent manner. By using this protocol, we believe that the
study can be reproduced by other researchers.

6 CONCLUSION AND FUTUREWORK
In this paper we studied the effort distribution across various tasks
for two projects that use different MBE tool-chains for developing
an autonomous MARS rover. We obtained data both from the auto-
matic logging of the tool-activities on the developers’ computers
as well as via weekly questionnaires.

Our study showed the patterns of effort distribution in MBE
across different development activities as well as over time. This

shows that there is no penalty in building models as part of the
construction phase. Our study is the first to show that collaborative
tasks make up the major part of the total of all development tasks.
The resulting observations on effort distribution of this study could
lead to improved MBE project planning and organization, which in
turn could lead to cost reduction.

Our inquiry into challenges showed that tool-related challenges
are the most encountered. We uncover that specific tool-challenges
are due to: i) usability of the tools, ii) the learning of the tool-chain,
iii) the interoperability of various tools and iv) the installation
and configuration of the tools. Exposing such challenges would
make them a candidate subject for research that are concerned with
MBE process improvement. Moreover, understanding and providing
ways to overcome these challenges could bring a significant impact
to the effectiveness and efficiency of the MBE approach.

6.1 Future Work
As we found that the majority of the development effort is spent
on the collaboration and communication activities, we would like to
explore the effect of using models on software design communica-
tion. This in order to understand whether or not the use and share
of software models could help in communicating and discussing
software architectural/design decisions.
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