
Using Voice Commands for UML Modelling Support on
Interactive Whiteboards: Insights and Experiences

Rodi Jolak, Boban Vesin, and Michel R.V. Chaudron

Joint Department of Computer Science and Engineering
Chalmers University of Technology adn Gothenburg University

Gothenburg, Sweden
{jolak,vesin,chaudron}@chalmers.se

Abstract. The ultimate goal of software design tools is to provide efficient sup-
port for designing software systems. In our previous work we presented OctoUML,
a prototype of a new generation software design environment. OctoUML supports
collaborative software design and enables different input methods for creation of
software models at various levels of formality. Recently, we added a voice recog-
nition unit into the system and provided users with possibilities of giving voice
commands. This paper presents insights and gathers experiences from enabling a
voice interaction modality within software design environments. By conducting
two user studies, we found that (i) the general perception regarding the usability
is positive, (ii) the voice interaction modality is mostly preferred for text input,
and (iii) the employment of voice interaction modality within the software design
environments enhances the efficiency of the software design process.

Keywords: MDE, software design environments, interaction modalities, voice
recognition, accessibility, integration with HCI

1 Introduction

The Unified Modelling Language (UML) is a well-known and commonly used language
for software design [22, 24]. Various Computer-Aided Software Engineering (CASE)
tools can help software developers to create a UML-model of software. Although these
tools can be run today on different devices (e.g. computers, tablets, etc.), the input
methods that they support are still limited, and therefore diminishing their usability [17].
Moreover, the interaction with such tools is not always well-designed for user experience,
easy learning and effective use. Consequently, many software designers tend to avoid
using CASE tools which are considered complex and time-consuming [1, 7].

Multimodal systems use integrated multiple interaction modalities (e.g. sketch, touch,
voice, etc.). Oviatt and Cohen [8] illustrated the importance of multimodal systems in
reshaping daily computing tasks and predicted their future role in shifting the balance
of human-computer interaction much closer to the human. Harris [12] highlighted the
importance of voice, as an incorporated modality within multi-modal interfaces, in
both opening up a new cognitive dimension and overcoming the barriers of “era-ending”
graphical interfaces. The usability of software design environments could be enhanced by
introducing voice recognition, as this could terminate the need of using the keyboards and

2 Rodi Jolak, Boban Vesin, Michel R.V. Chaudron

counteract the matter of menus hierarchy. Yet, the effectiveness could be also improved
even further [16].

Interactive whiteboards support touch-input and are useful tools for creating knowl-
edge and sharing information. They increase the learning outcome for students in the
classroom [9,11] and enhance the effectiveness and interaction at company meetings [10].
Such capabilities of interactive whiteboards make them potential input devices for soft-
ware design tools.

In a previous work, we presented our vision on a new generation of software design
environments [6]. One of the characteristics which we proposed for such environments
is that they should be equipped with microphones to record the spoken discussions, and
have a recognition component to interpret users’ voice-commands.

Recently, we created a software design environment, called OctoUML [15], that pro-
vides efficient support for the design of hardware and software architectures. OctoUML
can be run using different input devices ranging from desktop computers, over touch
screens, to large electronic whiteboards. Beside supporting the creation of software
models at different levels of formality, OctoUML is equipped with tools for multi-touch
and sketch recognition which enable concurrent collaborative modelling and sketch
formalization, respectively. Our current goal is to improve the usability and efficiency
of OctoUML by supporting and evaluating new modes of interaction. To this end, we
added a voice recognition component into OctoUML. This component is capable of
accommodating the most commonly used functions of the system (watch the demo
videos1 2).

This paper presents insights and gathers experiences from supporting voice inter-
action modality within software design environments. The contribution of this work is
mainly based on answering and discussing the following three research questions:

– (RQ1) For which features of a software design environment do users find it practical
to interact through voice commands?

– (RQ2) What are the perceptions of users regarding the usability of the voice interac-
tion modality supported by OctoUML?

– (RQ3) Does the employment of voice interaction modality within the software
design environments enhance the efficiency of the software design process?

To answer these questions, we conducted two user studies. In the first user study,
USS1, a version of OctoUML without the voice recognition feature was used (OctoUML-
Lite), while for the second user study, USS2, we enabled the voice recognition feature
(OctoUML-V). Details regarding the two user studies are presented in Section 4.

2 Related Work

A single interaction modality does not allow for an effective execution of tasks and use
of environments [18]. Multimodal systems provide possibilities to use a combination

1 http://goo.gl/JP4Mfg
2 https://goo.gl/uU6Zm3

Interaction With OctoUML Via Voice: Insights and Experiences 3

of modalities or change to a better-suited modality, depending on the specifics of the
task [23].

Like [23], we believe that supporting multiple interaction modalities within software
design environments would make the interaction: (i) more intuitive, especially during
software design processes when designers discuss and communicate their ideas to each
other via voice and gestures, and (ii) more effective by allowing the users to switch
to a better-suited modality for the execution of one particular task. Moreover like [8],
we believe that multi-modal systems have the potential to shift the balance of human-
computer interaction much closer to the human.

Repetitive Strain Injury (RSI) is a condition where pain and other symptoms occur
in muscles, nerves and tendons after doing repetitive tasks (e.g. using a keyboard
frequently) [28]. Several studies have been carried out to help programmers with RSI by
using voice recognition techniques [2, 3, 13]. However, Mills et al. [20] pointed out that
such techniques have a high rate of faults and errors which negatively influences their
usability.

Lahtinen and Peltonen [17] presented an approach to build speech interfaces to UML
tools. The authors set up a spoken language to manipulate the UML models, and built
a prototype (called VoCoTo) of a speech control system integrated with a CASE-tool
(Rational Rose3). They stated that speech recognition is applicable to be used to enhance
the interaction with UML tools. Soares et al. [26] presented a framework, VoiceToModel.
It allows the creation of requirements models, e.g. conceptual UML class diagram, from
speech recognition mechanisms. They evaluated their prototype through an experiment
with fourteen computer science students. The users experienced some difficulties in
using VoiceToModel. However, they were overall satisfied and liked the interaction model
provided by the framework.

The objectives of the two aforementioned related works [17, 26] were to assess the
viability of their systems and get a proof of concept instead of making a statistical proof
for their approaches. In this study, we aim to discover which tasks in the software design
process are better qualified to be supported by a voice interaction modality. Moreover, we
want to assess the efficiency of our approach by comparing two versions of OctoUML;
one version is enabled to recognize voice-commands and the other one is not.

Nishimoto et al. [21] designed a multi-modal generic drawing tool that supports
speech, mouse, and keyboard inputs. Their tool has a speech recognition system based on
Hidden Markov Models [25]. The evaluation showed that their multi-modal drawing tool
with speech recognition reduces the required operation time per task, mouse movement,
and commands number.

We assess the efficiency of the employment of the voice interaction modality in
software design environments by following a similar evaluation approach to [21]. In
particular, we measure the amount of time and number of steps that are required to
accomplish a specific task using two different input modalities (keyboard/touch and
voice) that are supported by OctoUML. Furthermore, we run formative evaluations in
order to get feedback on the usability and usefulness of our approach as well as get
suggestions for improvement.

3 http://www-03.ibm.com/software/products/en/rosemod

4 Rodi Jolak, Boban Vesin, Michel R.V. Chaudron

3 The Software Design Environment: OctoUML

OctoUML was mainly designed to bridge the gap between early software design process,
when informal tools (e.g. whiteboards) are typically used for brainstorming and design
reasoning, and subsequent formalization process, when formal tools (e.g. CASE-tools)
are used for documentation purposes. Such a gap or discontinuity was reported by
Budgen [5] in his study on why software design environments do not support realistic
design practices. Indeed, ideas and logical basis for the design solution can be easily
lost when moving from the early design reasoning process to the formalization process,
especially when there is a non-short timespan between the two processes.

OctoUML is a collaborative software design environment that allows the creation and
modification of diagrams at different levels of formality. In particular, the environment
allows mixing of both informal (e.g. sketches) and formal (e.g. UML class diagrm)
modelling notations. Furthermore, OctoUML is equipped with tools for multi-touch and
sketch recognition, and supports the transition from informal notations to formal ones.
The users of OctoUML are provided with options for moving, resizing, grouping and
separating software elements, regardless of their informal or formal character [14].

Figure 1 shows the architecture of OctoUML. The architecture is organized in a
way to effectively fit with complex business work-flows as well as to support future
integration of different modules and other enterprise applications.

The design environment contains three major components: UI component, Data
cloud and Services. The current version of the system offers only the UI and Data cloud
components. Additional services will be added during future developments. The UI
component consists of two separated but interconnected parts: Presentation manager and
Input unit. The Presentation manager provides means for performing stylus or touch-

Fig. 1. Architecture of OctoUML (Currently implemented components are presented in green.)

Interaction With OctoUML Via Voice: Insights and Experiences 5

based input commands on devices being used. Drawing layers include support for both
informal and formal modelling styles. Depending on the chosen layer, users are presented
with an appropriate toolbar. The Command tools are responsible for transferring the
inputs from users to different controllers. The Graph controller allows switching between
different input techniques as well as combining of different layers. The Input unit is
responsible for processing different inputs. In particular, a Sketch recognizer is provided
to recognize and transform informal models into formal concepts, hence allows to
maintain and transfer the designs for further processing tasks. A Multi-touch controller
captures and coordinates the inputs from different touch-points. Sketched elements as
well as formalized designs are saved and stored in the Data cloud. The Voice control
component is the main focus of this paper and is described in the following subsection.

3.1 Integration of The Voice Control Component

In order to improve the usability of OctoUML and increase its accessibility, we integrated
a voice-commands control component within the Input unit. The component is capable
of handling the most commonly used functions during the design process. Thus, users
can use voice commands in order to create and manage various elements of software
diagrams. The Voice control component was implemented using Sphinx4. Sphinx4 is an
open source voice recognition library developed by Carnegie Mellon University [29].

There are two main types of commands that trigger the Voice control component,
and therefore allow the interaction with OctoUML via voice:

– Type α : activation/execution of the different interaction tools available on the top of
the main canvas (see Figure 2) such as create class, select, undo/redo, etc.

– Type β : assign names to the created packages and classes.

Fig. 2. The main canvas of OctoUML.

6 Rodi Jolak, Boban Vesin, Michel R.V. Chaudron

For the latter type of commands (β), the current version of the voice control compo-
nent is based on a predefined dictionary that contains a list of expected words to be used.
Table 1 provides more details on the voice commands of types α and β .

Type α

Command Description
Create Class selects the class drawing tool
Create Package selects the package drawing tool
Create Edge selects the edge drawing tool
Selection Mode selects the select tool
Moving Mode selects the moving/panning tool
Undo/Redo undo/redo actions

Type β

Command Description
Name give names to classes and packages. For instance: double tap on

one class, then say “Name” followed by the desired name.
Table 1. Different types of voice commands.

4 Study

We conducted two user studies to answer the research questions that are presented
in Section 1. The two studies were conducted in two different sessions. In the first
user study, USS1, a version of OctoUML without the voice recognition feature was
used (OctoUML-Lite), while in the second user study, USS2, we enabled the voice
recognition feature (OctoUML-V). The purpose of carrying out the user studies was
to gather experiences, identify faults and discover areas of improvement of OctoUML.
Furthermore, we wanted to get and subsequently compare quantitative data regarding
the time and steps that are required for the accomplishment of a specific task using the
two versions of OctoUML.

USS1 involved fourteen software engineering students (ten PhD and four M.Sc. stu-
dents) and two post-doctorate software engineering researchers, whereas USS2 involved
fourteen participants (three PhD and eleven M.Sc. software engineering students). All
the subjects are familiar with software design and have experience in using the UML.
Moreover, they think that software modelling is a critical task for successful software
development and evolution (See Figure 3: the range of ratings is [1 to 5] where 1 is the
most negative score and 5 is the most positive score).

The subjects have a practical experience with a variety of modelling and design
tools. These tools range from whiteboards, pen&paper to CASE-tools like Enterprise
Architect4, Visual Paradigm5, Dia6, ArgoUML7 and Papyrus8.

4 http://www.sparxsystems.com/products/ea/
5 https://www.visual-paradigm.com/
6 http://dia-installer.de/shapes/UML/index.html.en
7 http://argouml.tigris.org/
8 https://eclipse.org/papyrus/

Interaction With OctoUML Via Voice: Insights and Experiences 7

Fig. 3. Expertise in UML modelling and perceived importance of modelling.

We deployed the two versions of our tool OctoUML-Lite and OctoUML-V on a multi-
touch interactive whiteboard (78 1/2" W x 53 3/8" H) that was connected to a Windows
7 PC with a Core Duo 3.00 GHz processor. Later on, each subject was introduced to
the functionalities of OctoUML. The introduction lasted around 10 minutes on average.
After that, the subjects were given a software design assignment which consisted of a
short text describing a system to be designed using UML class diagram. The text of the
assignment is provided in the following paragraph:

E-Learning System. The system is used by teachers, students and an administrator
(who is also a teacher). One teacher is responsible for many courses. The courses may
consist of many topics. Students can enroll into different courses. There is a news section
within the system. Teachers add news for a specific course and the students can read
them. Every course ends with an evaluation test. Teachers create a test and the students
have to do it. The students get one of these grades: fail, pass, good, or very good.

The subjects involved in USS2 were also given a sheet of paper containing a list
of detailed voice commands. While carrying out the design assignment, the subjects
were observed and video-recorded using a digital video camera in order to note and
understand their activities. On average, each subject completed the design assignment
in 20 minutes. After the completion of the design assignment, we asked the subjects
to answer a System Usability Scale (SUS) questionnaire [4] in order to give a global
overview of the subjective assessment of the usability of the two versions of OctoUML.
SUS can be used on small sample sizes and be fairly confident of getting a good
usability assessment [27]. After answering the SUS questionnaire, each participant was
involved in a semi-structured interview. The conversations were recorded using a digital
voice recorder. The interviewers took some notes which were expanded afterwards by
transcribing the audio recordings, and the data were quantitatively and qualitatively
analysed.

8 Rodi Jolak, Boban Vesin, Michel R.V. Chaudron

5 Results

The results are presented in a form of answers to the research questions that we posed
and reported previously in Section 1.

R.Q.1. For which features of a software design environment do users find it practical
to interact through voice commands?

We asked the subjects who were involved in the user study USS2 to rate the eligibility
(suitability) of the supported voice commands of type α (create class, create package,
create edge, selection mode, moving mode and undo/redo) and β (name class and
name package), together with two additional commands that could be supported in the
future: (i) add attribute/method, to allow the creation of attributes and methods via voice
commands; and (ii) delete class, to allow the deletion of selected classes. The results
are presented in Table 2, where the scale that is used for the rating ranges from 1 (not
important) to 5 (very important).

Voice Commands Results
User Study Median 1st Quartile 3rd Quartile Inter-Quartile Range

Type α (Creation) USS2 4.00 3.00 5.00 2.00
Type α (Selection) USS2 4.00 2.25 5.00 2.75
Type α (Moving) USS2 4.00 3.00 4.00 1.00
Type α (Undo/Redo) USS2 4.50 3.25 5.00 1.75
Type α (all) USS2 4.00 3.00 5.00 2.00
Type β USS2 4.50 4.00 5.00 1.00
Other Voice Commands Results

User Study Median 1st Quartile 3rd Quartile Inter-Quartile Range
Add attribute/method USS2 4.00 4.00 5.00 1.00
Delete Class USS2 3.00 2.00 4.00 2.00

Table 2. Suitability (eligibility) of different types of voice commands.

We also asked our subjects if there are any other functionalities that are desired to be
supported by voice commands. The following list reports these desired functionalities,
where every functionality was mentioned by at least one subject:

• naming and changing the type of association,
• save, open, import and export files,
• create a new diagram,
• re-arrange the classes and packages,
• select and deselect classes, packages or edges,
• zoom in and out,
• exit the application,
• define your own voice commands.

Interaction With OctoUML Via Voice: Insights and Experiences 9

R.Q.2. What are the perceptions of the users regarding the usability of the voice
interaction modality supported by OctoUML?

The perceptions regarding the usability of the two versions of OctoUML (OctoUML-
Lite and OctoUML-V) were collected via: (i) the SUS questionnaire and (ii) the semi-
structured interviews that were run after the completion of the design assignment. As a
matter of fact, the collected perceptions reflect satisfaction, comfort and acceptability
of use. The results are presented in Table 3. The median is indeed the same for all the
measurements concerning the usability of the two versions, except the measurement of
the required learning effort to get going with the system (OctoUML-V required more
learning effort).

Measurement Results
OctoUML version Median 1st Quartile 3rd Quartile I-Q.R.9

OctoUML-Lite 4.00 3.00 4.00 1.00
Willing to use the system frequently OctoUML-V 4.00 3.25 4.00 0.75

OctoUML-Lite 2.00 1.00 2.00 1.00
Complexity of the system OctoUML-V 2.00 1.00 2.00 1.00

OctoUML-Lite 4.00 4.00 5.00 1.00
Ease of use OctoUML-V 4.00 4.00 4.75 0.75

OctoUML-Lite 2.00 1.00 2.00 1.00
Need of support to use the system OctoUML-V 2.00 1.25 2.00 0.75

OctoUML-Lite 4.00 3.00 4.00 1.00
Integrity of various functions OctoUML-V 4.00 4.00 4.00 0.00

OctoUML-Lite 2.00 1.00 2.25 1.25
Inconsistency in the system OctoUML-V 2.00 1.00 2.00 1.00

OctoUML-Lite 5.00 4.00 5.00 1.00
Intuitiveness OctoUML-V 5.00 4.00 5.00 1.00

OctoUML-Lite 2.00 1.00 2.25 1.25
Cumbersomeness to use OctoUML-V 2.00 1.00 2.00 1.00

OctoUML-Lite 4.00 3.75 5.00 1.25
Feeling confident when using the system OctoUML-V 4.00 3.25 4.00 0.75

OctoUML-Lite 1.50 1.00 2.00 1.00
Required learning-effort OctoUML-V 2.00 1.25 2.00 0.75

Ease of using the Voice Interaction Modality (VIM) OctoUML-V 4.00 3.25 4.75 1.50

Perceived effectiveness of VIM OctoUML-V 4.00 3.00 4.00 1.00
Table 3. Perceptions regarding the usability of OctoUML-Lite & OctoUML-V

During the semi-structured interviews, various emotional responses and experiences
were shared with the interviewers. The subjects enjoyed the experience of using and
interacting with the software design environment, especially via voice. Perceptions
regarding the simplicity and ease of use of OctoUML were positive, and the subjects
valued these aspects when comparing OctoUML to other software design environments
that they used previously. The experience of naming the classes in UML class diagram
via voice was much more appreciated compared to the experience of using the keyboard
to do the same task. OctoUML-V was perceived useful for simplifying the process of
class diagram creation and recommended to people with disabilities.

9 Inter-Quartile Range

10 Rodi Jolak, Boban Vesin, Michel R.V. Chaudron

R.Q.3.Does the employment of voice interaction modality within the software design
environments enhance the efficiency of the software design process?

During the semi-structured interviews that were held in the user study USS2, a few
subjects (5 out of 14) perceived that the voice commands of type α did not significantly
enhance the design process as it was not that big of a reach or hassle for the subject
to click on the buttons in order to activate/execute the tools of the software design
environment. However the subjects considered this type of commands useful for people
with disabilities. While the voice commands of type β were much more appreciated by
the subjects who predicted their potential in replacing the use of the keyboard which was
perceived a time-consuming task. For that, we only considered the voice commands of
type β in the assessment of the efficiency of the employment of the voice interaction
modality in the software design environment (OctoUML). To assess the efficiency, we
measured the amount of time and number of steps (interactions) that are required for
naming classes and packages in all UML diagrams that were created during the two
user studies (USS1 and USS2) using OctoUML-Lite and OctoUML-V, respectively. The
results are presented in Table 4. They show that the process of naming the classes and
packages via voice requires the same number of steps (3 steps: select then name then
confirm), but less amount of time with respect to the same process using the keyboard. In
fact, the difference in time is significant according to Mann-Whitney’s test [19] (p-value
is 0.047 < 0.05). Furthermore, the standard deviation of the naming effort for OctoUML-
V (SD = 0.32) is lower than OctoUML-Lite (SD = 1.76), and indicates that the calculated
times for naming class diagram elements via voice are more closely clustered around the
mean (the variance of the required time to name different elements via voice is small).

OctoUML Version Number of steps Amount of time (Seconds)
Mean St.Dev. Difference in mean rankings

OctoUML-Lite 3 2.12 1.76 Mann-Whitney test (p-value)
OctoUML-V 3 1.35 0.32 0.047

Table 4. Naming effort: keyboard (OctoUML-Lite) vs. voice (OctoUML-V).

6 Discussion

According to our subjects, the better-suited task in software design that should be
supported by voice interaction modality is when the user needs the keyboard for text
input i.e. naming classes and packages via commands of type β . The main reason is that
using a keyboard is not ergonomic and a time-consuming task. In fact, it is easier, faster
and more comfortable to use voice instead of typing [26]. When we asked the subjects
to rate the eligibility (suitability) of the different voice commands, the voice commands
of type α got less suitability score than the commands of type β (α’s median is 4.0
against 4.5 for β). Even if such commands are of less suitability to the subjects, their
support was strongly recommended because of two reasons: (i) the interaction with the
software design environment via voice is more enjoyable than using the traditional way

Interaction With OctoUML Via Voice: Insights and Experiences 11

e.g. keyboard or touch inputs, and (ii) the potential of the voice interaction modality that
was perceived by the subjects in supporting people with disabilities. Indeed, some of our
subjects wanted to be able to create UML class diagrams by using only voice commands.
Of course for such a scenario, every possible feature and functionality of the software
design environment is a candidate for voice recognition.

Overall, the perceptions regarding the usability of the two versions are similar. The
median is indeed the same for all the measurements concerning the usability of the two
versions, except the measurement of the required learning effort to get going with the
system (see Table 3). In fact, the required learning effort for using OctoUML-V is more
than that of OctoUML-Lite (OctoUML-V’s median score is 2 against 1.5 of OctoUML-
Lite). This is because the subjects had to learn a list of various voice commands that
are necessary for using of the voice-interaction-enabled version; OctoUML-V. We have
also noticed the learning effort issue during the software design session. Indeed, before
starting with the design session, we supplied the subjects with a sheet of paper (short
manual) containing a list of the supported voice commands. At the beginning of the
session, the subjects often looked to the manual in order to remember the commands.
However, after practicing and getting more used to the commands, the subject learned
exactly how to master them without consulting the manual.

We found that the employment of voice interaction modality within the software
design environments enhances the efficiency of the software design process by reducing
the time required to name UML class diagram’ classes and packages. However, numerous
factors (e.g. the distance of the microphone, white noise, human pronunciation, etc.)
may affect the effectiveness or accuracy of the voice recognizer, and as a consequence
affect the enhancement in the efficiency of the software design process. This is in-line
with Mills et al. [20] who pointed out that voice recognition techniques have a high rate
of faults and errors which negatively influences their usability. In order to assess this
issue, we counted how many voice commands were used during the user study USS2,
and how many times the voice recognizer failed to correctly interpret such commands.
In particular, we noted:

• Unintended Commands. Happen when a given voice command activates/executes a
task different from the desired one.

• Faulty Name Inputs. Happen when a class or package gets a name different from the
one assigned via a voice command of type β (recognition error).

• Unrecognized Commands. Stand for voice commands that could not provoke any
consequence, in the sense that OctoUML-V could not interpret and even react to
such commands.

The average number of used voice commands is 27 (the lowest is 9 and the highest
is 42). Overall, the failure rate for using voice commands is 26% (see Figure 4). Such a
rate was obtained via dividing the total number of voice recognition faults (100) by the
total number of executed voice commands (381). Whereas the failure rate for using the
voice commands of type β (faulty name inputs’ failure rate) is 12%. This rate is small,
however, it still affects the enhancement in the time required for naming the UML class
diagram elements. In order to minimize the failure rate, more sophisticated recognizers
are needed to reduce the effects of the factors that may compromise the recognition
process.

12 Rodi Jolak, Boban Vesin, Michel R.V. Chaudron

Fig. 4. Usage and faults of voice commands.

7 Threats to Validity

Construct Validity. We assigned a design task which was relatively simple compared to
real world problems. This might have influenced the amount of discussions and usability
interactions. However during the interviews, all the subjects perceived the potential of
OctoUML in managing any kind of software design problems, even complex ones.

Internal Validity. None of the subjects were familiar with OctoUML. To mitigate this,
we gave the participants a short introduction explaining the features and functionalities
of OctoUML. Moreover, we provided the subjects involved in USS2 with a list of all
voice commands that are supported and could be used during the software design session.
During the interviews, the participants might have wanted to please the interviewers by
giving them a positive feedback. To mitigate this, we asked the participants to answer
the SUS questionnaire which allowed them to give feedback anonymously.

External Validity. The involved subjects in two the user studies, USS1 and USS2,
may not represent the general population of software engineering community. This
could threat the generality of the results. However we involved people with different
background, modelling expertise and academical degrees.

8 Conclusion and Future Work

Modelling is a common approach for software development as it allows efficient def-
inition of software artefacts in order to create a solution that meets the requirements.
There is an evident need for efficient methods and tools for designing software products.
Current software design tools constrain the realistic design process rather than supporting
it [5]. Furthermore, they lack adaptation and deployment of advanced technologies and
need flexibility on both platforms and used input methods.

The main goal of this study was to find out which features of software design
environments are prioritized to be supported by voice interaction modality, as well as

Interaction With OctoUML Via Voice: Insights and Experiences 13

understand whether the support of such features could: (i) enhance the usability and
efficiency of software design environments, and (ii) be of benefit for software design
processes. To achieve this goal, we designed and evaluated a multi-modal software design
environment, OctoUML, that supports multiple interaction modalities such as touch,
mouse, keyboard and voice. Furthermore, we conducted two user studies by involving
a population sample of thirty subjects (2 post-docs, 13 PhD and 15 M.Sc. students) to
evaluate and compare the usability as well as the efficiency of two versions of OctoUML;
one is voice-recognition-enabled (OctoUML-V) and the other is not (OctoUML-Lite).

OctoUML-V was more appreciated by the subjects. Moreover, it also enhanced the
efficiency of the software design process by reducing the required time for naming the
elements of the software design diagram.

The collected perceptions regarding the usability will be utilized to conduct and
track the development progress of OctoUML as more improvements could be done
in the future. Furthermore, we will study the impact of employing multi-touch and
remote collaboration techniques in OctoUML, and hence evaluate the usefulness of
these techniques in supporting the software design process.

Acknowledgments

We would like to thank Marcus Isaksson, Christophe Van Baalen, Johan Hermansson
and Emil Sundklev for their help in the development and evaluation of OctoUML.

References

1. M. B. Albizuri-Romero. A retrospective view of case tools adoption. ACM SIGSOFT Software
Engineering Notes, 25(2):46–50, 2000.

2. S. C. Arnold, L. Mark, and J. Goldthwaite. Programming by voice, vocalprogramming. In
Proceedings of the fourth international ACM conference on Assistive technologies, pages
149–155. ACM, 2000.

3. A. Begel. Spoken language support for software development. In Visual Languages and
Human Centric Computing, 2004 IEEE Symposium on, pages 271–272. IEEE, 2004.

4. J. Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996.

5. D. Budgen. The cobbler’s children: Why do software design environments not support design
practices? In Software Designers in Action: A Human-Centric Look at Design Work, pages
199–216. Chapman and Hall/CRC, 2013.

6. M. R. V. Chaudron and R. Jolak. A vision on a new generation of software design environ-
ments. In First Int. Workshop on Human Factors in Modeling (HuFaMo 2015). CEUR-WS,
pages 11–16, 2015.

7. N. L. Chervany and D. Lending. Case tools: understanding the reasons for non-use. ACM
SIGCPR Computer Personnel, 19(2):13–26, 1998.

8. P. Cohen and S. Oviatt. Multimodal interfaces that process what comes naturally. Commun
ACM, 43(3):45–33, 2000.

9. A. Drigas and G. Papanastasiou. Interactive white boards in preschool and primary education.
iJOE, 10(4):46–51, 2014.

10. Å. Fast-Berglund, U. Harlin, and M. Åkerman. Digitalisation of meetings–from white-boards
to smart-boards. Procedia CIRP, 41:1125–1130, 2016.

14 Rodi Jolak, Boban Vesin, Michel R.V. Chaudron

11. F. Gursul and G. B. Tozmaz. Which one is smarter? teacher or board. Procedia-Social and
Behavioral Sciences, 2(2):5731–5737, 2010.

12. R. A. Harris. Voice interaction design: crafting the new conversational speech systems.
Elsevier, 2004.

13. T. J. Hubbell, D. D. Langan, and T. F. Hain. A voice-activated syntax-directed editor for
manually disabled programmers. In Proceedings of the 8th International ACM SIGACCESS
Conference on Computers and Accessibility, pages 205–212. ACM, 2006.

14. R. Jolak, B. Vesin, and M. R. V. Chaudron. Octouml: An environment for exploratory and
collaborative software design. In 39th International Conference on Software Engineering.
ICSE’17, page in print, 2017.

15. R. Jolak, B. Vesin, M. Isaksson, and M. R. Chaudron. Towards a new generation of software
design environments: Supporting the use of informal and formal notations with octouml. In
Second International Workshop on Human Factors in Modeling (HuFaMo 2016). CEUR-WS,
pages 3–10, 2016.

16. A. E. Lackey, T. Pandey, M. Moshiri, N. Lalwani, C. Lall, and P. Bhargava. Productivity,
part 2: cloud storage, remote meeting tools, screencasting, speech recognition software,
password managers, and online data backup. Journal of the American College of Radiology,
11(6):580–588, 2014.

17. S. Lahtinen and J. Peltonen. Adding speech recognition support to uml tools. Journal of
Visual Languages & Computing, 16(1):85–118, 2005.

18. J. Larson, S. Oviatt, and D. Ferro. Designing the user interface for pen and speech applications.
In CHI’99 Workshop, Conference on Human Factors in Computing Systems (CHI’99), 1999.

19. H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is
stochastically larger than the other. The annals of mathematical statistics, pages 50–60, 1947.

20. S. Mills, S. Saadat, and D. Whiting. Is voice recognition the solution to keyboard-based rsi?
In 2006 World Automation Congress, pages 1–6. IEEE, 2006.

21. T. Nishimoto, N. Shida, T. Koayashi, and K. Shirai. improving human interface drawing tool
using speech, mouse and key-board. In Robot and Human Communication, 1995. RO-MAN’95
TOKYO, Proceedings., 4th IEEE International Workshop on, pages 107–112. IEEE, 1995.

22. A. Nugroho and M. R. Chaudron. A survey into the rigor of uml use and its perceived
impact on quality and productivity. In Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement, pages 90–99. ACM, 2008.

23. S. Oviatt, P. Cohen, L. Wu, L. Duncan, B. Suhm, J. Bers, T. Holzman, T. Winograd, J. Lan-
day, J. Larson, et al. Designing the user interface for multimodal speech and pen-based
gesture applications: state-of-the-art systems and future research directions. Human-computer
interaction, 15(4):263–322, 2000.

24. M. Petre. Uml in practice. In Proceedings of the 2013 International Conference on Software
Engineering, pages 722–731. IEEE Press, 2013.

25. L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE ASSP magazine,
3(1):4–16, 1986.

26. F. Soares, J. Araújo, and F. Wanderley. Voicetomodel: an approach to generate requirements
models from speech recognition mechanisms. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 1350–1357. ACM, 2015.

27. T. S. Tullis and J. N. Stetson. A comparison of questionnaires for assessing website usability.
In Usability Professional Association Conference, pages 1–12, 2004.

28. M. Van Tulder, A. Malmivaara, and B. Koes. Repetitive strain injury. The Lancet,
369(9575):1815–1822, 2007.

29. W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf, and J. Woelfel. Sphinx-4:
A flexible open source framework for speech recognition. 2004.

	Lecture Notes in Computer Science
	Introduction
	Related Work
	The Software Design Environment: OctoUML
	Integration of The Voice Control Component

	Study
	Results
	Discussion
	Threats to Validity
	Conclusion and Future Work

