
OctoUML: An Environment for Exploratory and
Collaborative Software Design

Rodi Jolak, Boban Vesin and Michel R. V. Chaudron
Joint Department of Computer Science and Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

{jolak,vesin,chaudron}@chalmers.se

Abstract—Software architects seek efficient support for plan-
ning and designing models at multiple levels of abstraction and
from different perspectives. For this it is desirable that software
design tools support both informal and formal representation of
design, and also support their combination and the transition
between them. Furthermore, software design tools should be
able to provide features for collaborative work on the design.
OctoUML supports the creation of software models at various
levels of formality, collaborative software design, and multi-modal
interaction methods. By combining these features, OctoUML is
a prototype of a new generation software design environment
that aims to better supports software architects in their actual
software design and modelling processes.
Demo video: https://youtu.be/fsN3rfEAYHw
OctoUML Project: https://github.com/Imarcus/OctoUML

Keywords-software design; modelling notations; multi-modal
interaction; collaborative design; user experience; UML

I. INTRODUCTION

Designing software consists of exploring design problems,
discussing solutions and creating software models as design
artifacts. Such artifacts provide a bridge between problem
and software implementation by describing user’s needs as
well as the product to be developed. As software systems are
gaining increased complexity, the importance of efficient soft-
ware design tools is also increasing. Software models change
frequently and are quite often updated by many designers
simultaneously [2]. These models should present a description
of complex systems at multiple levels of abstraction and from
a different perspectives. Therefore, it is crucial to provide
software design tools that give possibilities for efficient and
collaborative development as well as options for multi-modal
interaction.

Modelling tools can be classified into two groups: informal
and formal [3]. We mean by informal any tool that supports
informal design in the sense that it does not constrain the
notation used. Indeed, informal tools are preferred for their
flexibility as well as the role that they play in unleashing
designers’ expressiveness. Examples of such tools are white-
boards, paper and pencil. While we mean by formal any
tool that support one or few formalized notations. Typical
examples are UML CASE-tools (e.g. Rational Rose, Enterprise
Architect, Papyrus, StarUML, etc.). Formal tools are usually
used for code-generation and/or documenting purposes.

During early design phases, software designers often use
informal tools (e.g. whiteboards) to sketch their thoughts
and compare design ideas. Once the designers settle on one
possible solution, they proceed to create a formal version of the
sketchy design. In particular, they move from the whiteboard,
start-up the computers, run a formal tool (a CASE-tool), and
re-enter the solution that has been created previously during
the early design phase. So there is a gap between informal
designing in early software design phases and formal design
and documentation practices in subsequent development. To
bridge this gap, we present OctoUML, a software design
environment that supports exploratory and collaborative design
meetings. OctoUML provides means to allow the creation
of both sketchy hand-drawn elements and formal notations
simultaneously. Moreover, it allows the transformation of
sketchy designs into formal notations.

Oviatt and Cohen [9] illustrated the importance of multi-
modal systems in reshaping daily computing tasks and pre-
dicted their future role in shifting the balance of human-
computer interaction much closer to the human. We enabled
OctoUML to support multiple modes of interaction including
mouse, keyboard, touch/multi-touch using fingers and styluses,
sketching, and voice modality.

More often than not, the process of software design involves
several designers working on the same project simultaneously.
This could also occur in user-centered design situations where
users are involved in the design process. We implemented Oc-
toUML to support design collaborative sessions, both in-situ
(via the adoption of multi-touch technique) and at a distance
“remotely” (by using a client-server paradigm). OctoUML
can be run using a number of input devices ranging from
desktop computers over large touch screens to large interactive
whiteboards.

The paper is organised as follows: the related work is
presented in section two. Further information on OctoUML,
its architecture and features, and the performed evaluation are
reported in section three. The future objectives and concluding
remarks are presented in the last section (section four).

II. RELATED WORK

Several studies proposed different approaches to enhance
the software design process. Mangano et al. [8] identified some
behaviors that occur during informal design. In particular,



designers sketch different kind of diagrams (e.g. box and arrow
diagrams, UI mock-ups, generic plots, flowcharts, etc.) and use
impromptu notations. The authors implemented an interactive
whiteboard system (called Calico) to support these behaviors
and identified some ways where interactive whiteboards can
enable designers to work more effectively.

Wüest et al. [12] stated that software engineers often use
paper and pencil to sketch ideas when gathering requirements
from stakeholders, but such sketches on paper often need to
be modelled again for further processing. A tool, FlexiSketch,
was prototyped by them to combine free-form sketching
with the ability to annotate the sketches interactively for an
incremental transformation into semi-formal models. The users
of FlexiSketch were able to draw UML-like diagrams and
introduced their own notation. They were also able to assign
types to drawn symbols. Users liked the informality provided
by the tool, and had the will to adopt it in practice.

Magin and Kopf [7] created a multi-touch based system al-
lowing users to collaboratively design UML class diagrams on
touch-screens. They have also implemented a new algorithm
to recognize the gestures drawn by the users and to improve
the layout of the diagrams. However, their tool does not allow
for informal freehand sketching of arbitrary notations.

Lahtinen and Peltonen [6] presented an approach to build
speech interfaces to UML tools. The authors set up a spoken
language to manipulate the UML models, and built a speech
control system (VoCoTo) integrated with a CASE-tool (Ratio-
nal Rose). They stated that speech recognition is applicable to
be used to enhance the interaction with UML tools.

Table I summarizes the main supported functionalities by
OctoUML and illustrates the differences to the related work.

Related Work Informal & formal notations Interaction Modalities (MT,RC*)
Calico informal hand-drawn notations mouse, keyboard and touch (no, no)

Flexisketch informal hand-drawn notations mouse, keyboard and touch (no, no)
Magin&Kopf formal notations creation via

gestures
touch-based (yes, no)

VoCoTo formal notations mouse, keyboard and voice (no, no)
OctoUML creation and mix of informal

and formal notations simulta-
neously

mouse, keyboard, single
touch, multi-touch, and
voice

(yes, yes)

TABLE I
COMPARISON BETWEEN OCTOUML AND THE RELATED WORK.

*MT:MULTI-TOUCH, RC:REMOTE COLLABORATION.

III. OCTOUML

In a previous work [3], we presented our vision for a new
generation software design environment. To realize our vision,
we developed a prototype called OctoUML [5]. OctoUML is
a software design environment that supports exploratory and
collaborative software design. It is used to create and organize
diagrams as well as supports their modification and evolution.
Firstly, we illustrate the architecture of OctoUML. Secondly,
we describe the main functionalities that are supported by
OctoUML (sections B and C). Later on, we provide a scenario
showing how such functionalities could support the design pro-
cess. Lastly, we provide some details on OctoUML evaluation.

Fig. 1. Architectural Components of OctoUML

A. OctoUML Architecture

The key architectural components of OctoUML are pre-
sented in Figure 1. The environment contains three major
components: UI component, Data component and Services.
The current version of the system offers only the UI and Data
components. Additional services will be added during future
development. The UI component consists of: Presentation
manager and Input unit. The Presentation manager provides
means for performing stylus or touch-based input commands
on devices being used. Drawing layers include support for
both informal and formal modelling layers. The Command
tools are responsible for transferring the inputs from users to
different controllers. The Graph controller allows switching
between different input techniques with combining of multiple
layers. The Input unit is responsible for processing different
inputs. In particular, a Sketch recognizer is provided to rec-
ognize and transform informal models into formal concepts,
and hence allows to maintain and transfer the designs for
further processing tasks. A Multi-touch controller captures
and coordinates the inputs from different touch-points. All the
program data are saved and stored in the Data component.
Our tool uses a set of data structures to manage and maintain
the sketched elements and formalized designs.

B. Informal and Formal Notation

Whiteboards (or any informal tools e.g. paper and pen) are
used during early software design phases because of their flex-
ibility and immediacy, but also becuase they do not constrain
the notation being used. Informal notations (e.g. sketches) can
be used to express abstract ideas representationally, to allow
checking the entirety and the internal consistency of an idea
as well as to facilitate development of new ideas [11]. Fur-
thermore, informal notations can have a very close mapping
to the problem domain. However, the informal notations often
need to be formalized in order to allow their manipulation and
process e.g. sharing, code generation or documentation.

Modelling tools should not constrain designers to create
only some specific notations. Furthermore, they should main-
tain the characteristics of formal tools in their support of
design transfer and persistence [3].



Fig. 2. Combination of different notations on the same canvas

OctoUML allows the creation of both hand-drawn informal
sketches and computer-drawn formal elements (currently UML
class and sequence models) on the same canvas simultaneously
(Figure 2). OctoUML bridges the gap between early software
design process, when informal tools are typically used, and
later documentation and formalization process, when formal
tools are used. Beside supporting the creation of software mod-
els at different levels of formality, OctoUML is equipped with
a Sketch recognition unit which enables sketch formalization.
In particular, OctoUML allows the transformation of models
from informal to formal and vice versa at any time during
the modelling session. Furthermore, we adopted a layering
technique by which the informal notations belong to one layer
that we call the informal layer, and the formal notations belong
to another layer that we call the formal layer. The user can
then select to see the layers in combination or isolation.

C. Interaction Modes and Collaboration
The usability of current CASE tools is a common source

of criticism [4]. The interaction with such tools is often
based on using the mouse and keyboard. Other modes of
interaction (e.g. touch, gesture and voice) could be more
natural and intuitive. In order to improve the user experience
of OctoUML and increase its accessibility, the interaction
modalities of OctoUML are enriched by providing a voice-
commands recognition component capable of transforming
designers’ voice-commands into control actions.

The process of software design often involves more than
one designer working on the same project simultaneously.
OctoUML promotes collaborative design by adopting a multi-
touch technique and supporting remote collaboration. Next,
we provide more details on the supported functionalities:

• Multi-touch is an interaction technique that permits the
manipulation of graphical entities by more users at the
same time. Our tool allows multiple users to design
diagrams simultaneously by performing simple touch
gestures.

• In order to improve the user experience, we integrated
a voice-commands control component within the Input
unit. The component is capable of handling the most
commonly used functions during the design process.
Thus, users can use voice commands in order to create
and edit elements of software diagrams.

• To open up new opportunities for interactive collaborative
design, our tool supports remote collaborative sessions
between geographically distributed teams. One team of
designers can run a server instance of OctoUML, whereas
another team can join the session as client connecting
to the server. Video calls and chatting tools will be
integrated in order to support the joint design sessions.

D. Design process in UctoUML: A Scenario

Figure 3 illustrate the design process in OctoUML. Activi-
ties that are currently supported by OctoUML are distinct in
green. Let us think about the following scenario: a group of
software designers meet to explore and discuss design ideas
of a specific software product. The designers start with the
creation of some informal sketchy designs using OctoUML
being deployed on a large interactive whiteboard. After that,
the designers proceed with a selective transformation of some
informal sketches into a formal model. Later on, the created
model is analyzed to check possible flaws and performance
bottlenecks. Finally, the model is saved and uploaded to a
version control repository. The designers meet again (on-site
or from different locations) when new requirements come out
or having earlier requirements exposed to changes. They fetch
the design that was previously shared on the version repository,
update the design, and commit a new version that is now
compliant to the new requirements.

E. Evaluation

Two user studies were performed to evaluate OctoUML.
In both studies, the participants had to do a modelling task
using OctoUML, answer a System Usability Scale (SUS)
questionnaire [1], and participate into semi-structured inter-
views. The first study involved fourteen software engineering
students (ten PhD and four M.Sc. students) and two post-
doc researchers. The main purpose of the first study was to
evaluate the usability of OctoUML as well as to investigate
whether supporting the mix of informal and formal notation
could support the design process. OctoUML got an average
SUS-score of 78.75 which is a high usability score according
to [10]. The participants stated that informal notations could be
valuable artifacts beyond being just explorative means. They
also stated that such notations support designers’ activities in
understanding the problems and communicating ideas. Figure
4 shows the feedback from the participants regarding the use
of informal and formal notations within OctoUML.

Fig. 3. Design process in OctoUML



Fig. 4. User study I: informal vs. formal notations

Fig. 5. User study II: usability and learnability of OctoUML

The second study involved fourteen participants (three PhD
and eleven M.Sc. software engineering students). The main
purpose was to evaluate the learnability and usability of
OctoUML as well as the role of the voice interaction modality
in enhancing the user experience and supporting the software
design process. OctoUML got a SUS-score of 74.6 which can
be considered a quite good usability score [10]. The majority
of the participants stated that it was easy to learn and use
the different functionalities of OctoUML (including the voice
interaction modality), see Figure 5. Furthermore, the voice
interaction modality was perceived helpful in overcoming non-
ergonomic tasks e.g. typing via a keyboard.

IV. CONCLUSION AND FUTURE DEVELOPMENT

In this paper we presented OctoUML, a prototype of a
new generation software design environment for collaborative
software design. It provides support for mixing informal hand-
drawn elements with formal notations. Moreover, it supports
different input methods and interaction modalities.

OctoUML combines the advantages of both informal tools
e.g. interactive whiteboards and formal tools e.g. CASE tools,
and therefore is able to bridge the gap between early software
design process (when designers often sketch their ideas) and
formalisation/documentation process. OctoUML was evalu-
ated by conducting two user studies and involving thirty
participants in total. The main goal was to get feedback on
the viability and usability of OctoUML. The results show that
the participants enjoyed their experience with OctoUML and
had a positive perception regarding its usability.

The current architecture of OctoUML allows future expan-
sions of the system with additional functionalities. The goal
is to implement and incorporate additional features in the
subsequent versions of the system:

– Analysis component. It will perform software model anal-
ysis. This tool will be used to automatically evaluate the
created software models to detect general design flaws,
security flaws and performance bottlenecks.

– Versioning component. The purpose is to provide a repos-
itory for keeping track of the version history of stored
models, and the ability to observe changes that are made
to specific artifacts in the environment. The system should
also be able to resolve conflicts when two users change
the same model data. Such component would increase
the potential for parallel and distributed work, improve
the ability to track and merge changes over time, and
automate management of revision history. It would also
allow multiple designers to work concurrently, supporting
tight collaboration and a fast feedback loop.

– Code management. Models and code must be combined
throughout the development process. Users will be able
to generate code from formalized UML class diagrams
as well as view models and codes side by side and jump
between editing one and keeping the other synchronized.

V. ACKNOWLEDGEMENT

We would like to thank Marcus Isaksson, Johan Hermans-
son, Emil Sundklev and Christophe Van Baalen for their help
in the development and evaluation of OctoUML.

REFERENCES

[1] J. Brooke et al. Sus-a quick and dirty usability scale. Usability
evaluation in industry, 189(194):4–7, 1996.

[2] M. R. V. Chaudron, W. Heijstek, and A. Nugroho. How effective is uml
modeling? Software & Systems Modeling, 11(4):571–580, 2012.

[3] M. R. V. Chaudron and R. Jolak. A vision on a new generation of
software design environments. In First Int. Workshop on Human Factors
in Modeling (HuFaMo 2015). CEUR-WS, pages 11–16, 2015.

[4] L. Fowler, J. Armarego, and M. Allen. Case tools: Constructivism and
its application to learning and usability of software engineering tools.
Computer Science Education, 11(3):261–272, 2001.

[5] R. Jolak, B. Vesin, M. Isaksson, and M. R. V. Chaudron. Towards a
new generation of software design environments: Supporting the use of
informal and formal notations with octouml. In Second Int. Workshop
on Human Factors in Modeling. CEUR-WS, page : in print, 2016.

[6] S. Lahtinen and J. Peltonen. Adding speech recognition support to uml
tools. Journal of Visual Languages & Computing, 16(1):85–118, 2005.

[7] M. Magin and S. Kopf. A collaborative multi-touch uml design tool.
Technical reports, 13, 2013.

[8] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek. Supporting
informal design with interactive whiteboards. In Proc. of the SIGCHI
Conf. on Human Factors in Computing Systems, pages 331–340. ACM,
2014.

[9] S. Oviatt and P. Cohen. Perceptual user interfaces: multimodal interfaces
that process what comes naturally. Communications of the ACM,
43(3):45–53, 2000.

[10] J. Sauro. A practical guide to the system usability scale: Background,
benchmarks & best practices. Measuring Usability LLC, 2011.

[11] B. Tversky. What do sketches say about thinking. In 2002 AAAI Spring
Symposium, Sketch Understanding Workshop, Stanford University, AAAI
Tech. Report SS-02-08, pages 148–151, 2002.

[12] D. Wüest, N. Seyff, and M. Glinz. Flexisketch: A mobile sketching
tool for software modeling. In Mobile Computing, Applications, and
Services, pages 225–244. Springer, 2012.


